Argonne°

NATIONAL LABORATORY

= \ ;

\
\ \
\ \ =
— <
\ — \
3 ///'.—\\‘\ Py

POLARIS: General Purpose Agent-based Modeling Framework
Specialized for High-Performance Transportation Simulations

Joshua Auld, Michael Hope, Hubert Ley, Vadim Sokolov

Transportation Research and Analysis Computing Center
Argonne National Laboratory
January 11, 2015

#T%% U.S. DEPARTMENT OF
@ %
T I

What is POLARIS?

o

POLERIS

Middleware for Developing Agent-based Models
— Data Interchange
— Visualization
— Case Study Generation and Analysis

— Discrete Event Simulation

— Interprocess Communication
Plug and play repository

/

A Repository of Transportation Libraries

- Common Algorlthms Libraries User Libraries

Traffic
Manager

Antares
Graphics

— Extended by Researchers Populaton pemand

Synthesizer Simulation

Event Manger

— Standardized Style and Structure Network

Simulation

Router ITS

Fully Developed Applications
Y PEC AP - -

Custom Data Interprocess
Containers Communication

— Transportation Network Simulation m—T—
ore Libraries

— Integrated Activity Based Travel o Dt v
ocator esign Patterns Engine
Demand Simulation

\

Low-level Capabilities 2

Why Develop a Framework for Building
Transportation Models?

= Pattern of extremely common objects being re-written, simply to provide slightly
different views. Many models differ primarily in level of aggregation.

= Certain areas (namely Intelligent Transportation Systems) have entities which are
rapidly changing and cannot be represented adequately in a black-box model.

= Groups who want to add features or change behavior tend to write new models
rather than salvage material from existing models due to the difficulty of re-
adpating them, this incurs a re-invention of the wheel.

= Many performance and modularity-enhancing capabilities in the realm of
advanced computing are being under-utilized.

The POLARIS Core Library Implements the Building
Blocks for High-Performance Simulations

= Memory Management Library
— Optimized for the type of allocation needed in transportation modeling applications

Discrete Event Engine

— Enables writing from an agent-based perspective

Interprocess Engine (de-emphasized in current version of POLARIS)
— Enables parallel cluster execution

High Performance Data Structures

— Non-standard structures relevant for use in transportation modeling applications

Memory Manager Optimized for use in Discrete
Event Simulations

Motivation
— Transportation code can be performance critical
— Simulation code tends to follow distinct memory allocation / deallocation patterns
— Discrete Event Engine execution requires a global tracking of allocated objects
— Solution: Create a memory allocator which is designed for simulation systems

Technique
— Hierarchical memory layout: divide by type, then block, then object

— Memory blocks owned by threads for allocation (control may be traded between
threads on deallocation)

— Effective structure for each type is an unrolled linked list of memory pools

— Elements within memory pool (blocks) are cache line aligned

— Block size is optimized by user input, object count, and object size

— Replace default memory allocator with tc_malloc (for highly threaded applications)
— Allocated memory is prepended with variables necessary for performing execution

Assembling an Object Using Polaris Memory Manager

E_prototype struct Agent P Object interface
{

accessor(data, NONE,NONE)

template<typename T> void Initialize(T data) Object implementation, defines the

L}. / object as an execution object
L]

~limplementation struct Agent_Impl : public Polaris_Component<MasterType, INHERIT(Agent_Impl),Execution_Object>

{

m_data(float, data, NONE,NONE);

template<typename T> void Initialize(T data)

B
Elstruct MasterType
1
typedef Agent_Impl<MasterType> agent_type;
i3

=lint main()

{
typedef Agent<MasterType::agent_type> agent_itf;
agent_itf* agent = (agent_itf*)Allocate<MasterType::agent_type>();

agent->Initialize<float>(42.0);
} Allocation of an object returns a

pointer to the object which can be
cast to its prototype

Memory Allocation Process in Memory Manager

Interaction with
General Pool for

Type Object Width

Current Thread

P
1

: i Page

1

' i Execution /

' Type i Memory

i Execution/ i Information
1

i Memory |

| Information i

i

Type Specialized Pool A

Type_A* object = Allocate<Type A>() User Code

Custom Memory Manager offers Substantial
Performance and Usability Benefits

= Performance Benefits

Allocations and deallocations are fully parallelized

Unrolled linked list structure provides an effective balance of stride optimization
vs memory alteration

Can make use of user input (such as the expected number of objects) to further
optimize the structure

= User Benefits

Multiple deallocation options: agent-directed, lazy deallocation, or immediate
Global tracking of memory allows global tracking of objects by ID

Provides additional protection when deallocating agents which may be currently
executing on another thread

Tracking of memory usage without an external tool

Discrete Event Engine Designed for Transportation
Simulations

= What does the discrete event engine do?
— Allows the developer to create an agent of any kind (Traveler, Traffic manager,...)
— Describe when it wants to act (what time under what conditions)
— Define what agents do when when they do act
— Define one or more actions which the agent can choose among
— Then allow the agent to perform autonomously

= Why do we need it?
— Transportation code can be performance critical

— Agent-based design applies particularly well to travelers, signals, traffic
management centers, and other “intelligent” objects in a simulation

— A discrete event engine supports this paradigm.

= Solution: develop a Discrete Event Scheduling engine as the heart of the
execution model

Key Features of the Discrete Event Engine

= The user does not explicitly control when time advances

= Rather than the user having to fire events at a given time, the user requests
for an event to happen some time in the future and then defines the
conditions under which it fires

= Making all event requests available at a global level before they occur
allows an incredible opportunity to optimize their execution behind the
scenes

Discrete Event Engine Design Benefits

= Structural Benefits

Eliminates the traditional execution loop over time and objects
Provides universal “time” in the simulation

Eases the task of coordinating the actions of agents

Allows user to write from the agents’ point of view

Provides a space “under the hood” for advanced debugging

= Performance Benefits

Enables automated multi-threading which is highly scalable
System can self-optimize to balance workload among threads
Memory management allows fast creation of new agents

Polling all agents can be done quickly using optimized data containers
(optimizing contiguous memory usage)

11

Scheduling an Event for an Agent

* Inherit from Polaris_Component

// POLARIS implementation of a moving agent

—limplementation struct Agent : public Polaris_Component<MasterType, INHERIT(Agent),Execution_Object>

{

// Agent initializer - creates and draws agent at starting position, loads the starting event
= void Initialize(int start)

{ : .
Load_Event<Agent>(&Do_Move, start, 0); Schedm?thefwstgyentuno.
y - - register in the Initialize function

// Movement event, and associated event function
= static void Do_Move(Agent* _this,Event_Response& response)

{

// Process move
bocl done = _this->Move();
if (done) Swap_Event((Event)&Do_Stop);

. Process the event

Set next execution time

// Set next iteration
response.next._iteration = iteration() + 1;
response.next._sub_iteration = @;

}
void Move()[{ ... }|

// Stop event and associated stop function, this draws
static void Do_Stop(Agent* _this,Event_Respo

void Stop() { ... }|

* Swap event when movement done
* On next iteration Do_Stop will be
executed instead

stopped vehicle

o) { ... 1]

— -

s

Events are processed first by type

e e ey

Type A

General Purpose
Execution Threads

< Start New Iteration

Execution Root

a

Type B

e List of Active Typed Pages

* Next Execution for Root

* Next Next Execution for Root

e Last Completed Execution Iteration
* Execution Root Level Locks

13

Threads then process types by segment and block

Type A

0=

General
Purpose
Execution
Threads

mmmmma‘

List of Ag
Next Exe
Next Nex
Last Com

Type

List of Active Blocks for
Segment

Next Execution for Segment
Next Next Execution for
Segment

Last Completed Execution for
Segment

Segment Level Locks

Callback for Looping over Page

Type Level Locks

Finally, process objects within the execution block

J
>

—~CN N

J _____

Next Execution for Block

Next Next Execution for Block

Last Completed Execution Step for Block
Intrusive List of Active Objects
(Event_Object types only)

Block Level Lock

* Next Iteration for Object

e Current Iteration for Object

e Register for Execution Callback

* Intrusive List Info (for
Event_Object)

If Object is Scheduled - User Written
Execution Code Fires

Engine Schedules Next Iteration
(Next Iteration == This Iteration
means “not ready try again later”)

Exit block if current object not
scheduled for current iteration

15

Scheduling Flow for Discrete Event Scheduling Engine

\ If Type To Exec
Root -> Type

If Root To Exec If Block To Exec
World -> Root Type -> Block

If Object To Exec
Block-> Object

Object Next Exec -> Block Next

Block Next Exec -> Type Next Exec

S
‘\ f Type Next Exec -> Root Next Exec
\
\
N

Prototype Interprocess Engine will Eventually Allow
System to Extend to Multi-Processor Environments

Allow Developers to Utilize Cluster Computers for Individual Cases

= Exchange Messages with other POLARIS Applications

= Automatically Aggregate, Coordinate, Parallelize, and Optimize all Exchanges

= Fully Integrate with the Discrete Event Engine

= Have Capability to Send Messages Addressed to Specific Objects

= Define Custom Parsing Functions For When a Message is Received

17

Key Performance Characteristics

) Resource Monitor - oIEd

departed= 142388, 89644, in_networ " .
departed= 143940, ar e T TS g, Lile Monitor Help
departed= 145495, 3 91162, in_networ 5 =
departed= 147051, arrived= 91887, in_networ Overview | CPU Memory | Disk Network
departed= 148693, arrived= 92788, in_networ o=
" = = i JOP R A ;
RS R L SN T R 5 S RIS | processes M 1oy, W nswman ()| || cpusmiodeq 100% 1
[] image Threads U EA t
pdating Network Skims: [] Fixed_Demand_Simulator.exe 30 87
D System Interrupts - 0 -
pdating skim starting at iteration: 21600 [] perfmon.exe 22 0
etwork Skimming run—time: 10845.3 [[] dwm.exe 7 0 v
< >
departed= 153876, arrived= in_networ
departed= 155595, arrived= in_networ R ‘
departed= 157318, arrived= in_networ }Servu:es JT 81% CPU Usage 7 |
departed= 159129, arrived= in_networ
departed= 1610834, arrived= in_networ . S }
departed= 162989, arrived= in_networ. Associated H... Search Handles P4y (v |
departed= 164692, arrived= -, in_networ
departed= 166547, arrived= - .]
departed= 168473, arrived= | Associated Modules 7 |
o 1762808, ar i
172158,
departed= 174086 . p - in_networ
departed= 176071, arrived= » in_networ
departed= 178022, arrived= -, in_networ
departed= 179972, arrived= in_networ.
departed= 181958, arrived= in_networ.
Run-time performance
180
160 .
Statistics:
Run-time: 1:09:00
140 Trips: 19.5mm
Rate: 20.7 X real time
@ 120
0
~
o
Q
Y 100
£
5
% 80
o .
= 10:30AM 2:50PM
2 60 Rate: 27.7 Rate: 15.8
© i . .
5 Vehicles: 277,831 Vehicles: 650,103
E 4 CPU 11 (Node 0) 100%
(7] \
20
% -
0 CPU 12 (Node 0) 100% 4
12:00 AM 3:00 AM 6:00 AM 9:00 AM 12:00 PM 3:00 PM 6:00 PM 9:00 PM 12:00 AM
Simulation Time v

Conclusion

= POLARIS Core libraries provide:

— High performance memory management

— Discrete event simulation optimized for multi-threaded execution of agents
with sparse scheduling

— Potential extension to multi-processor environment using inter-process
communication library

= Takes advantage of modern processor architecture:
— Automated threading
— Transparent to model developer — but still controllable if needed
— Highly optimized load-balancing
— Memory manager with nested layout for efficient object execution

= Extensible framework can be used for variety of transportation simulation
needs

19

Thank You!

For more information go to:
https://github.com/anl-tracc/polaris

